Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors

Eur J Med Chem. 2018 Jul 15:155:905-924. doi: 10.1016/j.ejmech.2018.06.049. Epub 2018 Jun 22.

Abstract

In the current work, new 1,3,4-oxadiazole derivatives were synthesized and investigated for their cytotoxic effects on A549 human lung adenocarcinoma, C6 rat glioma and NIH/3T3 mouse embryonic fibroblast cell lines. Compounds 2, 6 and 9 were found to be the most potent anticancer agents against A549 and C6 cell lines and therefore their effects on apoptosis, caspase-3 activation, Akt, FAK, mitochondrial membrane potential and ultrastructural morphological changes were evaluated. N-(5-Nitrothiazol-2-yl)-2-[[5-[((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl]-1,3,4-oxadiazol-2-yl]thio]acetamide (9) increased early and late apoptotic cell population in A549 and C6 cells more than cisplatin and caused more mitochondrial membrane depolarization in both cell lines than cisplatin. On the other hand, N-(6-methoxybenzothiazol-2-yl)-2-[[5-[((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl]-1,3,4-oxadiazol-2-yl]thio]acetamide (6) caused higher caspase-3 activation than cisplatin in both cell lines. Compound 6 showed significant Akt inhibitory activity in both cell lines. Moreover, compound 6 significantly inhibited FAK (Phospho-Tyr397) activity in C6 cell line. Molecular docking simulations demonstrated that compound 6 fitted into the active sites of Akt and FAK with high affinity and substrate-specific interactions. Furthermore, compounds 2, 6 and 9 caused apoptotic morphological changes in both cell lines obtained from micrographs by transmission electron microscopy. A computational study for the prediction of ADME properties of all compounds was also performed. These compounds did not violate Lipinski's rule, making them potential orally bioavailable anticancer agents.

Keywords: Akt; Apoptosis; Benzothiazole; Cancer; FAK; Oxadiazole; Thiazole.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Focal Adhesion Kinase 1 / antagonists & inhibitors*
  • Focal Adhesion Kinase 1 / metabolism
  • Humans
  • Mice
  • Molecular Structure
  • NIH 3T3 Cells
  • Oxadiazoles / chemical synthesis
  • Oxadiazoles / chemistry
  • Oxadiazoles / pharmacology*
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Oxadiazoles
  • Protein Kinase Inhibitors
  • Focal Adhesion Kinase 1
  • PTK2 protein, human
  • Proto-Oncogene Proteins c-akt